Production and Purification of Secretory Simian Cytidine Monophosphate-N-acetylneuraminic Acid Hydroxylase Using Baculovirus-Protein Expression System.

نویسندگان

  • Tadanobu Takahashi
  • Sawako Kawagishi
  • Hiroki Funahashi
  • Nonoka Hayashi
  • Takashi Suzuki
چکیده

Cytidine monophosphate (CMP) N-acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH) is an essential enzyme for N-glycolylneuraminic acid (Neu5Gc) synthesis. In humans, Neu5Gc cannot be synthesized because of a deletion in the CMAH gene. Since Neu5Gc research has not been actively performed in comparison with Neu5Ac research, little is known about the function of Neu5Gc. Possible reasons are that CMAH for controlling Neu5Gc synthesis is not understood well at the molecular level, that commercial Neu5Gc is expensive, and that addition of exogenous Neu5Gc to glycoconjugates is not a general method because of the difficulty in obtaining CMAH. One solution to these problems is to achieve large-scale production of CMAH with enzymatic activity. To produce and purify CMAH as simply as possible, we generated simian CMAH as a secretory protein with a histidine tag using a baculovirus protein expression system. After culture of baculovirus-infected cells in serum-free medium, secretory simian CMAH (approximately 180 µg) was highly purified from the supernatant (150 mL) of cell culture. HPLC analysis showed conversion of CMP-Neu5Ac to CMP-Neu5Gc by the secretory CMAH. We succeeded in producing secretory CMAH with enzymatic activity that is easy to purify. In addition, peptide-N-glycosidase F treatment of CMAH indicated that secretory CMAH was a glycoprotein with N-glycan. It will also contribute to research on Neu5Gc function by easy-to-use methods for controlling Neu5Gc synthesis, for exogenous addition of Neu5Gc to glycoconjugates and by application to industrial Neu5Gc synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and Expression of Simian Rotavirus Spike Protein (VP4) in Insect Cells by Baculovirus Expression System

Background: VP4 protein is as spikes on rotavirus outer capsid shell which is responsible for virus attachment to the host. VP4 induces production of neutralizing antibodies which could be used for serotyping of different isolates. Methods: Simian rotavirus SA11 gene 4 cDNA was cloned into a cloning plasmid pDONRTM by recombination reaction using clonase II enzyme mix. The resulting clone was c...

متن کامل

Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning

Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) i...

متن کامل

High-level expression of biologically active human prolactin from recombinant baculovirus in insect cells.

We examined the feasibility of high-level production of recombinant human prolactin, a multifunctional protein hormone, in insect cells using a baculovirus expression system. The human prolactin cDNA with and without the secretory signal sequence was cloned into pFastBac1 baculovirus vector under the control of polyhedrin promoter. Prolactin was produced upon infection of either Sf9 or High-Fiv...

متن کامل

Construction of a functional CMP-sialic acid biosynthesis pathway in Arabidopsis.

Previous studies have reported that plants contain negligible amounts of free or protein-bound N-acetylneuraminic acid (Neu5Ac). This is a major disadvantage for the use of plants as a biopharmaceutical expression system, since N-glycans with terminal Neu5Ac residues are important for the biological activities and half-lives of recombinant therapeutic glycoproteins in humans. For the synthesis ...

متن کامل

Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity

Many mechanisms have been proposed for how heightened aerobic glycolytic metabolism fuels cancer pathogenicity, but there are still many unexplored pathways. Here, we have performed metabolomic profiling to map glucose incorporation into metabolic pathways upon transformation of mammary epithelial cells by 11 commonly mutated human oncogenes. We show that transformation of mammary epithelial ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological & pharmaceutical bulletin

دوره 38 8  شماره 

صفحات  -

تاریخ انتشار 2015